Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23%

نویسندگان

چکیده

Electron transport layer (ETL) is pivotal to charge carrier for PSCs reach the Shockley–Queisser limit. This study provides a fundamental understanding of heterojunction electron layers (ETLs) at atomic level stable and efficient perovskite solar cells (PSCs). The bilayer structure an ETL composed SnO2 on TiO2 was examined, revealing critical factor limiting its potential obtain performance. Alteration oxygen vacancies in underlayer via annealing process found induce manipulated band offsets interface between layers. In-depth electronic investigations elucidate importance properties apparent correlation hysteresis phenomena, including current density–voltage (J–V) curves, appears as function type alignment. Density functional theory calculations reveal intimate relationship vacancies, deep trap states, efficiency formation cascade alignment control over enhances device performance suppresses hysteresis. Optimal exhibits power conversion (PCE) 23.45% with open-circuit voltage (Voc) 1.184 V, showing better stability under maximum point tracking compared staggered one-sun continuous illumination.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar perovskite solar cells using fullerene C70 as electron selective transport layer

Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...

متن کامل

Interfacial Kinetics of Efficient Perovskite Solar Cells

Perovskite solar cells (PSCs) have immense potential for high power conversion efficiency with an ease of fabrication procedure. The fundamental understanding of interfacial kinetics in PSCs is crucial for further improving of their photovoltaic performance. Herein we use the current-voltage (J-V) characteristics and impedance spectroscopy (IS) measurements to probe the interfacial kinetics on ...

متن کامل

Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells.

A highly-efficient inverted heterojunction perovskite solar cell was prepared. A homogeneous and compact perovskite (CH3NH3PbI3) layer was prepared via a two-step solution deposition method, and subsequently a double-layer PCBM film was deposited by a sequential spin-coating/vapor deposition process as the electron transport layer. The optimised device could achieve a 12.2% (average 11.09%) eff...

متن کامل

Multifunctional Inverse Opal‐Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells

A novel multifunctional inverse opal-like TiO2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

متن کامل

Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells.

In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy & environmental materials

سال: 2022

ISSN: ['2575-0348', '2575-0356']

DOI: https://doi.org/10.1002/eem2.12347